Differential methylation status of imprinted genes in nuclear transfer derived ES (NT-ES) cells.

نویسندگان

  • Gang Chang
  • Sheng Liu
  • Fengchao Wang
  • Yu Zhang
  • Zhaohui Kou
  • Dayuan Chen
  • Shaorong Gao
چکیده

Compared with fertilized embryo derived ES (F-ES) cells, somatic cell nuclear transfer (SCNT) produced ES (NT-ES) cells were proposed appropriate for cell transplantation based therapies. Although previous studies indicated that NT-ES cells and F-ES cells were transcriptionally and functionally indistinguishable, characterization of DNA methylation patterns of imprinted genes in NT-ES cells is lacking. Here, we show that DNA methylation patterns in the differentially methylated region (DMR) of paternally imprinted gene, H19, displayed distinct abnormalities in certain NT-ES and F-ES cell lines after long-term culture in vitro. DNA methylation profiles of H19 appeared very dynamic in most ES cell lines examined, either hypermethylation or hypomethylation could be observed in specific ES cell lines. In contrast to H19, maternally imprinted genes, Mest and Peg3, showed relatively stable methylation patterns in ES cells, especially Peg3, which displayed better capability in enduring long-term culture in vitro. Our results indicate that abnormal methylation profiles of certain imprinted genes could be observed in both NT-ES and F-ES cell lines after long-term culture in vitro although these cell lines were proved to be pluripotent with germline transmission competent. Stringent screening of epigenetically normal NT-ES cells might be potentially necessary for further therapeutic application of these cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of Five Human Lactoferrin Transgenic Cloned Goats Using Fibroblast Cells and Their Methylation Status of Putative Differential Methylation Regions of IGF2R and H19 Imprinted Genes

BACKGROUND Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos. According to the studies on cattle and mice, DNA methylation of some imprinted genes, which plays a vit...

متن کامل

Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells

The resetting of a somatic epigenotype to a totipotential state has been demonstrated by successful animal cloning, via transplantation of somatic nuclei into enucleated oocytes. We have established an experimental system, which reproduces the nuclear reprogramming of somatic cells in vitro by fusing adult thymocytes with embryonic stem (ES) cells. Analysis of the lymphoid-cell-specific V-(D)-J...

متن کامل

Non-germline Restoration of Genomic Imprinting for a Small Subset of Imprinted Genes in Ubiquitin-like PHD and RING Finger Domain-Containing 1 (Uhrf1) Null Mouse Embryonic Stem Cells Running title: Non-germline restoration of genomic imprinting

Background: Once erased, DNA methylation in imprinted genes was shown previously to be re-established only through germ-line passage. Results: UHRF1 re-expression in Uhrf1-/mouse ES cells restores DNA methylation for a few imprinted genes. Conclusion: DNA methylation for a few imprinted genes can be restored without germ-line passage. Significance: ES cells can be a useful model for studying DN...

متن کامل

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

Differential Genomic Imprinting and Expression of Imprinted microRNAs in Testes-Derived Male Germ-Line Stem Cells in Mouse

BACKGROUND Testis-derived male germ-line stem (GS) cells, the in vitro counterpart of spermatogonial stem cells (SSC), can acquire multipotency under appropriate culture conditions to become multipotent adult germ-line stem (maGS) cells, which upon testicular transplantation, produce teratoma instead of initiating spermatogenesis. Consequently, a molecular marker that can distinguish GS cells f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genomics

دوره 93 2  شماره 

صفحات  -

تاریخ انتشار 2009